Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Waqas Saleem"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A parametric sensitivity study on preforming simulations of woven composites using a hypoelastic computational model
    (Journal of Reinforced Plastics and Composites, 2015) Muhammad A Khan; Waqas Saleem; Muhammad Asad; Hassan Ijaz
    Preforming simulation for structural composite processing can significantly assist in the development of forming tools, prediction of manufacturing issues, optimization of process parameters and structural design analysis. The present study is aimed at investigating the influence of some important parameters in composite forming using a hypoelastic computational model developed for simulating the deformation behaviour of fibrous materials. The process parameters considered within this numerical work investigate the effects of binder force, coefficient of friction and forming speed. The study is conducted using two most commonly used double-curvature geometries for analysis of woven composites: double dome and hemisphere. It has been shown with this comprehensive study that the forming simulations are greatly affected by the choice of process parameters, and models based on finite element approach, such as the proposed hypoelastic model, can only predict its effects.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback