Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Abdul Rehman Atiq"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    AI powered health monitoring for electrical machines using machine learning
    (UMT Lahore, 2025) Rabia Yasmeen; Abdul Rehman Atiq; Muhammad Anas
    This project develops and demonstrates a low-cost AI powered health monitoring system for a single-phase capacitor-start induction motor using an Aurdino UNO microcontroller and sensors (ACS712 for current, ZMPT101B for voltage, DS18B20 for winding temperature and SW-420 for vibration pulses). The firmware acquires synchronized measurements in short sliding windows, computes electrical, thermal and vibration features, and applies a simple, interpretable random Foresto classify the motor state as healthy or faulty in real time. Sensor data and health status are streamed to a Google Sheet for historical logging and displayed on a Blynk mobile dashboard for remote visibility and alerts. Controlled tests with induced overload, restricted cooling and imbalance scenarios show that the system detects abnormal conditions within a few seconds, maintains stable readings during normal operation. The results confirm that an explainable edge AI approach can provide timely, reliable condition monitoring for motors without expensive industrial hardware, laying a practical foundation for future multi-class diagnostics and predictive maintenance enhancements.

DSpace software copyright © 2002-2026 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback