FINAL YEAR PROJECT REPORT
B.S. INDUSTRIAL AND MANUFACTURING ENGINEERING
SESSION 2011-2015

Project Advisor: Sir Abbas Raza

Submitted By:

Zain -ul-Abideen (111831-004)
Muhammad Ehsan Ghani Khan (111831-032)
Muhammad Irfan (111831-019)
Mohsin Rasool (111831-015)
Cost Benefit Analysis of Automated Storage & Retrieval System for Car Parking

Submitted to the Department of Industrial and Manufacturing Engineering, University of Management and Technology Lahore for the partial fulfillment of the requirement for the Bachelor’s degree

In

Industrial and Manufacturing Engineering

SESSION: 2011-2015

Project Advisor:
Signature: _____________________

Sir Abbas Raza

Chairman.

Department of Industrial and Manufacturing Engineering UMT Lahore
ACKNOWLEDGMENTS

All praises to Almighty ALLAH, WHO blessed us with courage and knowledge to complete this project.

We gratefully acknowledge our project advisor Sir Abbas Raza for his guidance and supervision for the completion of this project. He guided us throughout the project with his knowledge and experience and made us capable of completing the project successfully.

Many thanks to Government Organizations including LAHORE PARKING COMPANY, TRAFFIC ENGINEERING AND TRANSPORT PLANNING AGENCY and ENVIRONMENT PROTECTION DEPARTMENT, PUNJAB for their help, contribution and many constructive suggestions regarding completion of the project.

We are also grateful to different AS/RS manufacturers worldwide such as ROBOTIC PARKING COMPANY and EITO & GLOBAL INC. for sharing the useful information related to AS/RS system.

We acknowledge our resources for arranging our meetings to visit various government departments.

Authors
ABSTRACT

The growing number of cars in Pakistani metropolitans is adding to vehicular emission, congestion and exerts tremendous pressure on limited available parking space. It is impossible to provide more space in the old constructed markets. This affects the people adversely in every area; especially the commercial activities, as people are hesitant to shop at markets where car parking is not possible. It adds to the anxiety, frustration, safety and security problems. So the need of the better parking solution is acute. An automatic parking is space saving and cost effective alternative and at the same time resolves traffic congestion issues, minimize accidents on roads and other stress injuries.

Main purpose of the research is to check the feasibility of automated storage and retrieval system for car parking. First step is the realization of problem, as there are a lot of traffic problems arising due to increasing number of vehicles on road. To determine the parking problems, a customer survey is conducted at Liberty Lahore. Result of this survey show that people are not satisfied with existing parking. By consulting various Government organization like Lahore parking company, TEPA and Environment protection Department, Punjab encouraged us that the need of installing such problem solving project is essential. After acquiring cost details from International Manufacturers and calculating all benefits that can be extracted from this project, help us to perform Benefit cost ratio analysis. After that we have reached to an optimal solution.

The results of this study are that this project is feasible at Liberty Lahore. Furthermore this project could be made more economical if the Government subsidize this project.
Table of Contents

CHAPTER NO.01

1.1 Introduction

1.2 Parking Problems

 1.2.1 Congestion

 1.2.2 Accidents

 1.2.3 Security

 1.2.4 Effect on environment

1.3 Objective

CHAPTER NO.02

2 History

 2.1 Paris-1905

 2.2 Ferris wheel-1920s

 2.3 Kent automatic parking garage

 2.4 US-1940-2012s

CHAPTER NO.03

3 Parking

 3.1 Types of Parking

 3.1.1 Parallel parking

 3.1.2 Perpendicular parking

 3.1.3 Angle parking/echelon parking

 3.1.4 Multiple Level Car Parking (MLCP)

 3.2 Effects of parking

CHAPTER NO.04

4 Automated Storage and Retrieval System

 4.1 Definition

 4.2 Why to use AS/RS

 4.2.1 Buffer storage in production

 4.2.2 Support of just in time delivery
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3</td>
<td>Kitting of parts for assembly</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Compatible with automated identification system</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Computer controlled and tracking of materials</td>
</tr>
<tr>
<td>4.3</td>
<td>Types of AS/RS</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Unit load AS/RS</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Deep lane AS/RS</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Mini load AS/RS</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Man on board AS/RS</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Automated item retrieval system</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Vertical lift storage modules (VLSM)</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Carousel storage system</td>
</tr>
<tr>
<td>4.4</td>
<td>Applications of AS/RS</td>
</tr>
</tbody>
</table>

Chapter no.05

5 Questionnaire

5.1 Survey results

Chapter no.06

6 AS/RS manufacturers

6.1 Robotic parking system Inc

6.2 BIM – building information modeling

6.2.1 System modules

6.3 EITO & GLOBAL

6.3.1 Specifications of EITO & GLOBAL round parking

6.3.2 System components

6.3.3 Working

Chapter no.07

7 Costs

7.1 Direct cost

7.2 Indirect costs

7.2.1 Overhead costs

7.2.2 General and administrative costs

7.2.3 Cost of land
7.3 Proposed Systems

7.3.1 EITO & GLOBAL

7.3.2 Robotic Parking

CHAPTER NO.08

8 Benefits

8.1 Carbon credit

8.2 Avoiding accidents and stress injuries

8.3 Concrete Jungle

8.4 Other Benefits

8.5 Direct Benefits for EITO & GLOBAL

8.6 Direct Benefits for Robotic Parking

CHAPTER NO.09

9 Cost Benefit Analysis

9.1 CBA Purpose

9.2 Time and discounting

9.3 CBA Analysis Steps

9.4 Cost Benefit Analysis

9.4.1 EITO & GLOBAL

9.4.2 Robotic Parking System

CHAPTER NO.10

10 Comparison between Robotic & Conventional Parking

10.1 Robotic Parking System

10.1.1 Lowers Development Costs

10.1.2 Lowers Insurance Hazard Risks

CHAPTER NO.11

11 Conclusion